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Abstract

Steady state two-dimensional mixed convection problem in a vertical two-sided lid-driven differentially heated

square cavity is investigated numerically. The left and right moving walls are maintained at different constant tem-

peratures while upper and bottom walls are thermally insulated. Three cases were considered depending on the direction

of moving walls. Richardson number, Ri ¼ Gr=Re2 emerges as a measure of relative importance of natural and forced

convection modes on the heat transfer. Governing parameters were 0:01 < Ri < 100 and Pr ¼ 0:7. It is found that both

Richardson number and direction of moving walls affect the fluid flow and heat transfer in the cavity. For Ri < 1 the

influence of moving walls on the heat transfer is the same when they move in opposite direction regardless of which side

moves upwards and it is reduced when both move upwards. For the case of opposing buoyancy and shear forces and for

Ri > 1, the heat transfer is somewhat better due to formation of secondary cells on the walls and a counter rotating cell

at the center.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Mixed convection problem with lid-driven flows in

enclosures are encountered in a variety of engineering

applications including cooling of electronic devices,

furnaces, lubrication technologies, chemical processing

equipment, drying technologies, etc.

Fluid flow and heat transfer in rectangular or square

cavities driven by buoyancy and shear have been studied

extensively in the literature. A review shows that there

are two kinds of studies: the first one is concerned with

horizontal top [1–10] or bottom [11] wall sliding lid-

driven two-dimensional cavities, in which the top wall

has a constant velocity [1–3] or oscillating [4,5], and

similarly in three dimensional cavities [6,7,9,10,16].
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Other solid walls in these cases are at various boundary

conditions. The second deals with side driven differen-

tially heated cavities. In this case, left or right vertical

wall or both vertical walls move with a constant velocity

in their planes [12,13]. In these studies usually the lid-

driven side and the one opposing it are heated differen-

tially to create a temperature gradient in the cavity.

Combination of buoyancy forces due to temperature

gradient and forced convection due to shear results in a

mixed convection heat transfer, which is a complex

phenomenon due to interaction of these forces. Our

concern in this study is being of the second kind, we will

briefly review the literature on side driven differentially

heated cavities.

Arpaci and Larsen [12] have presented an analytical

treatment of the mixed convection heat transfer in tall

cavities, which had one vertical side moving, vertical

boundaries at different temperatures and horizontal

boundaries adiabatic. They showed that in this partic-

ular case, the forced and buoyancy-driven parts of the

problem could be solved separately and combined to

obtain the general mixed convection problem. Aydın
ed.
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Nomenclature

A aspect ratio, H=L
g gravitational acceleration, m/s2

Gr Grashof number, gbH 3DT=m2

H cavity height, m

L cavity width, m

Nu Nusselt number, hH=k
P pressure, Pa

Pr Prandtl number, m=a
Re Reynolds number, VpL=m
Ri Richardson number, Gr=Re2

T temperature, K

u, v dimensionless velocities in x- and y-
direction

Vp lid-driven plate velocity, m/s

x0, y0 cartesian coordinates

x; y dimensionless cartesian coordinates, x0=L,
y0=L

Greek symbols

m kinematic viscosity, m2/s

a thermal diffusivity, m2/s

q density, kg/m3

l dynamic viscosity, kg/m s

w stream function

b thermal expansion coefficient, 1/K

h dimensionless temperature

u depended variable

Superscript

k iteration number

Subscripts

c cold wall

h hot wall

p plate

w wall
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[13] studied numerically mechanisms of aiding and

opposing forces in a shear and buoyancy-driven cavity.

The square cavity had one vertical hot wall moving

upwards or downwards, the opposite cold wall fixed,

and both horizontal walls adiabatic. He carried out a

parametric study for Gr=Re2 from 0.01 to 100 with

Pr ¼ 0:71 fluids and identified three kinds of heat

transfer regime: forced convection dominated, mixed

and buoyancy dominated regime. He determined further

that mixed convection range of Gr=Re2 for opposing-

buoyancy case was wider than that of the aiding-buoy-

ancy case, although he did not present any quantitative

information regarding these regimes and heat transfer

characteristics.

Kuhlmann et al. [14] conducted a numerical and

experimental study on steady flow in rectangular two-

sided lid-driven cavities. They found that the basic two-

dimensional flow was not always unique. For low

Reynolds numbers it consist two separate co-rotating

vortices adjacent to the moving walls. Blohm and

Kuhlmann [15] studied experimentally incompressible

fluid flow in a rectangular container driven by two facing

side walls which move steadily in anti-parallel for Rey-

nolds numbers up to 1200. The moving sidewalls are

realized by two rotating cylinders of large radii tightly

closing the cavity. They found that beyond a first

threshold robust, steady, three-dimensional cells bifur-

cate supercritically out of the basic flow state. If both

side walls move with same velocity (symmetrical driving)

the oscillatory instability was found to be tricritical.

Indirectly related to the present study, two-sided lid-

driven shallow cavities were studied by Alleborn et al.

[16]. They studied heat and mass transfer in a two-sided

shallow cavity having an aspect ratio of 5, which had
both moving bottom hot wall and top cool wall, and two

others adiabatic. They determined the effect of Reynolds

number and concentration in cavities at different angles,

i.e., with horizontal and vertical orientation of the cav-

ity, by using vorticity-stream function approach. They

found that cavity length and velocity were parameters

affecting the mass transfer and established two turning

points and flow configurations in which heat and mass

transfer were minimized.

The previous studies clearly show that lid-driven

differentially heated cavities have interesting applica-

tions in various fields and the mixed convection with

two-sided lid-driven differentially heated cavities has not

been addressed. Depending on the applications, various

interactions between natural and forced convection

should be known, the governing parameters and their

effects on heat transfer should be established. The aim

of this study is to investigate this case in differentially

heated square cavities in which both vertical sides

are moving and both horizontal sides are adiabatic.
2. Problem description

The definition sketch of the problem and the

boundary conditions are shown in Fig. 1. It is a two-

sided lid-driven square cavity filled with an incom-

pressible fluid. The vertical lids have different constant

temperatures. The horizontal walls are adiabatic. Three

different cases were considered as shown in Fig. 1. In

case I, the left wall (cold) is moving up while right wall

(hot) is moving down. In case II, the left wall is moving

down while the right upwards, and in case III both walls

are moving upwards. In all three cases the moving walls



Fig. 1. Physical model for three cases and the coordinate system.
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have the same speed and gravitational force direction is

parallel to the moving walls.
3. Mathematical modeling

It is assumed that the flow is two-dimensional, steady

state, laminar and the fluid is incompressible. In fact,

experimental results with lid-driven cavities [14] have

shown that two-dimensional solution is acceptable for

small Re numbers, which is the case in this study. The

thermophysical properties of the fluid at a reference

temperature are assumed to be constant, except in the

buoyancy term of the momentum equation, i.e., the

Boussinesq approximation. It is further assumed that

radiation heat transfer among sides is negligible with

respect to other modes of heat transfer. In the light of

assumptions mentioned above, the non-dimensional

continuity, momentum and energy equations can be

written as follows:
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The following non-dimensional variables are defined

x ¼ x0

L
; y ¼ y0

L
; u ¼ u0

Vp
; v ¼ v0

Vp
; p ¼ p0

qV 2
p

h ¼ T � Tc
Th � Tc

; Gr ¼ gbH 3Dh
m2

; Re ¼ VpL
m

; Pr ¼ m
a
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>>;
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Boundary conditions are isothermal on the vertical

moving lids and adiabatic on the horizontal walls. On

the horizontal walls, u and v velocities are zero and lids

have a constant velocity. The relevant boundary condi-

tions are given as follows:

x¼ 0; 0< y < 1; u¼ 0; v¼ 1 or ðv¼�1Þ; h¼ hc
x¼ 1; 0< y < 1; u¼ 0; v¼ 1 or ðv¼�1Þ; h¼ hh
y¼ 0; 0< x< 1; u¼ v¼ 0; oh=oy¼ 0

y¼ 1; 0< x< 1; u¼ v¼ 0; oh=oy¼ 0

9>>=
>>;
ð6Þ

Local Nusselt number is

Nuy ¼ � 1

A
ðoh=oxÞw=ðhh � hcÞ ð7Þ

The average Nusselt number is calculated by integrating

the local Nusselt number along the wall

Nu ¼ 1

A

Z 1

0

Nuy dx ð8Þ

The stream function is calculated from its definition

u ¼ ow
oy

; v ¼ � ow
ox

ð9Þ

It is taken w ¼ 0 at the solid boundaries.
4. Numerical solution of governing equations

The discretization procedure of the governing equa-

tions is based on a finite control volume using the

non-staggered grid arrangement with the SIMPLEM

algorithm [17]. The mathematical details of the discret-

ization process can be found in the literature [18].

The validation of present computer code has been

verified for the mixed convection in a lid-driven cavity

with a stable vertical temperature gradient problem by

Iwatsu et al. [2]. As can be seen from Table 1 there is a



Table 1

The comparison of average Nusselt number values with Iwatsu

et al. [2]

Ri number Iwatsu et al. [2] Nu This study Nu

1.00 1.34 1.33

0.06 3.62 3.60

0.01 6.29 6.21

Fig. 2. Streamlines (on the left) and isotherms (on the right) for
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good agreement for average Nusselt numbers obtained

in the present study when compared to those of [2].

Numerical experiments were performed in order to

check the grid independence of the solutions. Three

different grid sizes (81 · 81, 61· 61 and 41 · 41) were

used and (61 · 61) grid points were adopted for grid-free

solution throughout the calculations in the present

study. This grid dimension has shown a negligible

deviation in Nusselt number (0.17%). To obtain finite

difference equations, power law difference scheme

(PLDS) for convective terms, central difference scheme

(CDS) for diffusion terms were used [18]. The absolute

convergence criterion of (j/k � /k�1j < 10�4) was used

for the termination of all computations, where u
(u; v; T . . .) is the depended variable in the partial dif-

ferential equations and k is the iteration number. An

under-relaxation parameter of 0.5 was used in order to

obtain a stable convergence for the solution of

momentum and energy equations while there was no

need for such a parameter in the solution of pressure

equation. Streamlines were generated from the axial

velocity components as being w ¼
R
udy integration

over physical domain. In a typical computation, about

2000 iterations were required to obtain the convergence.
case I: (a–b) Ri ¼ 0:1, (c–d) Ri ¼ 1, (e–f) Ri ¼ 10.
5. Results and discussion

Mixed convection flow and temperature fields in two-

sided lid-driven square cavity are examined. The

governing parameters in this problem is Richardson

number, Ri ¼ Gr=Re2, which characterizes the relative

importance of buoyancy to forced convection. To vary

Richardson number, Grashof number is fixed at

Gr ¼ 104 while changing Reynolds number through the

plate velocity Vp. The calculations are done with Rey-

nolds number identical at both sides of the cavity.

Investigations through the cavity are made for ranges of

the Richardson number from 0.01 to 100. Two-sided lid-

driven cavity is analyzed according to the direction of

moving plate in three cases shown in Fig. 1. The results

for each will be presented next.

Case I: The left walls adjacent to left moving lid is

moving upwards while the right wall moves downwards.

It is noted that forces due to moving lids and buoyancy

act in opposite directions. Streamlines (on the left) and
isotherms (on the right) for Ri ¼ 0:1–10 are shown in

Fig. 2. For Ri ¼ 0:1, Fig. 2a and b shows that the forced

convection plays a dominant role and the recirculation

flow is mostly generated only by moving lids. As it is

seen from Fig. 2a the recirculation is clockwise and some

perturbations are seen in streamlines in the upper right

and lower left corners due to impingement of fluid to the

horizontal wall. Even if the observed perturbations at

the upper right and lower left corners are ignored, we

can see that they are too different from streamlines and

isotherms observed in a differentially heated cavity.

For these two cases of Fig. 2a and c, jwextj ¼ 6:98�
10�4, x ¼ 0:49, y ¼ 0:51 and jwextj ¼ 2:01� 10�4, x ¼
0:54, y ¼ 0:51 respectively. For Ri ¼ 10 in Fig. 2c and d,

we observe, in addition to a main cell, appearance of two

secondary cells: the main cell is formed at the center of

the cavity, but the cell center not quite on the symmetry

lines (jwextj ¼ 1:025� 10�5, x ¼ 0:58 y ¼ 0:55), while

two other weaker cells are formed near the moving



Fig. 4. Local Nusselt number along the cold wall for case I.
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walls. This is because the fluid rises along the right hot

wall and sinks on the left cold wall due to forces gen-

erated by buoyancy and by shear. As a result two

clockwise rotating cells are formed at each side and a

clockwise rotating cell at the center makes the heat

transfer from right to left possible. Similar phenomena

have not been observed with one vertical sided lid-driven

cavity in the literature, although at low Richardson

numbers Aydın [13] has reported two cell formations.

Isotherms in Fig. 2b, d and f show that as Richardson

number increases the horizontal thermal gradient near

the vertical walls decreases, as a result of which heat

transfer decreases. This will be discussed next.

The details of velocity profiles at the vertical center-

line and local Nusselt number along the cold wall are

presented in Figs. 3 and 4 respectively. In Fig. 3, as Ri is
increased to 10 the velocity profile turns to negative

profile unlike for lower Richardson number. It is ob-

served that, u velocity profiles become flatter with

increasing of Richardson number, an indication of a

stratified flow in the cavity, which is similar to ones

obtained in case of natural convection in differentially

heated cavities at high Grashof numbers, but values at

Ri > 10 negative velocity profile formed on the upper

part of the enclosure. For low Richardson numbers, the

forced convection becomes dominant and a strong cir-

culation is observed in the cavity.

Fig. 4 shows that following the observations made

for Fig. 2, at low Richardson numbers, the local Nusselt

number increases along the cold moving wall, hence, the

heat removal is enhanced. At high Richardson numbers,

the variation of Nusselt number is negligibly small,

which is an expected outcome for natural convection

dominated regime. But for lower Richardson number as
Fig. 3. Velocity profiles at the vertical centerline for case I.
a result of different velocity profile (negative profile on

the upper) local Nusselt number has been increased to

some degree near the upper wall as seen in Fig. 4.

Case II: In this case, the left wall is moving down-

wards while the right wall upwards, which represents the

case with aiding shear and buoyancy forces. Fig. 5

illustrates streamlines (on the left) and isotherms (on the

right) for Ri ¼ 0:1–10. The streamlines and isotherms for

Ri ¼ 0:1 and 1.0 in Fig. 5a and c respectively show a

mirror image of those in Fig. 2a and c with circulation

direction changing from clockwise to counter-clockwise

due to moving plate directions. However, in order to

check the validation of present study from point of view

of flow field, streamline patterns given in Fig. 5a and c

cold be compared with experimental study of Blohm and

Khulmann [15]. It could be seen that there was quali-

tatively a good agreement between present study and

experimental study of Ref. [15].

For this case, jwextj ¼ 7:187� 10�4, x ¼ 0:49, y ¼
0:51, which shows the cell center has shifted only slightly

to the left of the symmetry line, but the strength is rel-

atively high due to forced convection. Isotherms show

that the flow in the center of cavity is not much affected

by the horizontal thermal gradient. They are restricted

to the vertical cavity walls where thermal gradients are

steeper, as a result of which, the heat transfer signifi-

cantly increases.

Fig. 5c and d shows streamlines and isotherms for

Ri ¼ 1, in which case forced and natural convections are

comparable. There is less significant effect of the moving

lids on the streamlines and isotherms for this case. The

isotherms are somewhat similar to those observed in

differentially heated cavities but the streamlines are quite

different. jwextj ¼ 2:08� 10�4, x ¼ 0:45, y ¼ 0:51, which
shows the cell center shifted strongly to the left and its

strength became lower.



Fig. 5. Streamlines (on the left) and isotherms (on the right) for

case II: (a–b) Ri ¼ 0:1, (c–d) Ri ¼ 1, (e–f) Ri ¼ 10.

Fig. 6. Velocity profiles at the vertical centerline for case II.

Fig. 7. Local Nusselt number along the cold wall for case II.
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Fig. 5e and f shows the results for Ri ¼ 10, in which

case the buoyancy effect can be observed clearly. Since

both vertical sides have the same Reynolds number and

both moving in the opposite direction to that of buoy-

ancy forces, excluding the perturbations at the corners

the streamlines and isotherms in the cavity are quite

similar to those usually obtained in a differentially

heated cavity by natural convection. In this case,

jwextj ¼ 3:94� 10�5, x ¼ 0:58, y ¼ 0:51. We can see that

the strength of the circulation is reduced considerably

and the center of the cell moved towards right. These

observations reported here are not similar to those ob-

served in one vertical sided lid-driven cavities [13].

To examine the flow and heat transfer in the cavity,

velocity profiles at vertical centerline and local Nusselt

number at the cold wall are produced and presented in

Figs. 6 and 7 respectively. Fig. 6 shows velocity profiles

for Richardson number from 0.01 to 100, which are

almost symmetric in the lower and upper half of the

cavity. As expected, it is seen that as Richardson number

increases, u velocity profiles become flatter with veloci-
ties near zero along the vertical centerline. For small

Richardson numbers, u velocity makes a peak near the

left upper and lower elevations corresponding to the

leading edge of moving wall.

Fig. 7 shows that as Richardson number increases,

the local Nusselt number decreases. This is expected

since for increasing Richardson number, natural con-

vection becomes dominant and the flow motion is gen-

erally subdued. As a result the heat transfer in the

interior is dominated by conduction mode.

Case III: This is the case both vertical walls move

upward in which aiding forces of buoyancy and shear

are on the right and opposing forces are on the left.

Therefore we should expect that main circulation will

be on the right of the cavity. Streamlines and isotherms

for Richardson number from 0.1 to 10 are presented in



Fig. 8. Streamlines (on the left) and isotherms (on the right) for

case III: (a–b) Ri ¼ 0:1, (c–d) Ri ¼ 1, (e–f) Ri ¼ 10.

Fig. 9. Velocity profiles at the vertical centerline for case III.
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Fig. 8. Streamlines for Ri ¼ 0:1 in Fig. 8a show two

circulating cells, a counter-clockwise circulating cell on

the right and clockwise circulating one on the left. For

Ri ¼ 0:1, for which the forced convection is dominant,

the quasi-symmetrical behavior is an expected result due

to relatively negligible buoyancy forces. However, as has

been pointed out earlier, the one on the right is domi-

nant due to aiding buoyancy and shear forces with

jwextj ¼ 4:88� 10�4, x ¼ 0:74, y ¼ 0:53. Fig. 8b shows

that the isotherms form quasi-symmetrical and steeper

thermal gradients between two counter-circulating cells

and no temperature gradient penetration is discernable

around them. For Ri ¼ 1:0 in Fig. 8c and d, i.e., buoy-

ancy and shear forces are equally important, the aiding

buoyancy driven force on the right affects the flow and

temperature fields while that on the left is almost nulli-

fied by the opposing shear forces. As a result, the cell on

the right fills the cavity more than the one on the left. As

Richardson number increases, the buoyancy effect is

seen clearly from the evolution of streamlines in Fig. 8c
for Ri ¼ 1 and Fig. 8e for Ri ¼ 10. For Ri ¼ 1:0 in Fig.

8c and d, the cell on the right grows further with its

center shifting upwards, jwextj ¼ 1:645� 10�4, x ¼ 0:76
y ¼ 0:6. For Ri ¼ 10 in Fig. 8e and f, which is a buoy-

ancy dominated regime, the counter-clockwise circulat-

ing cell on the right grows further due the aiding forces

on the hot wall while the one on the left becomes weaker

and smaller, i.e., the left cell nearly vanishes for the

natural convection becomes more dominant there. For

this case jwextj ¼ 2:44� 10�5, x ¼ 0:67, y ¼ 0:51, which
shows that the center of the main cell moved towards the

symmetry lines. These observations are similar to those

obtained by Aydın [13] with upward moving left wall:

the effect of the upward moving right wall in case III

becomes negligibly small as if it were not moving. The

isotherms in Fig. 8f are like observed in natural con-

vection in differentially heated cavities and show steeper

horizontal temperature gradients at the lower part of the

right moving wall. Due to presence of the left cell

the temperature gradient is weakened at the center of the

cavity and a stratification is observed.

Velocity profiles along the centerline and local Nus-

selt number at the cold wall are presented in Figs. 9 and

10. Since two vertical walls move in the same direction

maximum velocities are almost an order of magnitude

smaller than those of the previous cases for different

Richardson numbers: u velocity varies from )0.06 to

0.06 while in the other two cases it varied from �1 to 1.

For cases I and II, velocity profiles are almost symmetric

in lower and upper half of the cavity, which is also the

case for case III except for Ri ¼ 0:01. It is seen that in

the latter case the profile is not symmetric, which is ex-

plained by examining the streamlines and isotherms for

this case. It was seen that two quasi-symmetrical counter



Fig. 10. Local Nusselt number along the cold wall for case III.

Fig. 11. Average Nusselt number for different cases as a func-

tion of Richardson number.
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rotating cells were formed: the cell on the right had

jwextj ¼ 1:36� 10�3, x ¼ 0:75, y ¼ 0:53 and the one on

the left jwextj ¼ 1:33� 10�3, x ¼ 0:24, y ¼ 0:51. The up-

per part of the left cell penetrated slightly to the right

hand side while the lower part of the right cell to the left

hand side, resulting in the profile at the centerline shown

in Fig. 9.

Fig. 10 shows that local Nusselt number is decreasing

from bottom to top along the cold wall for a given

Richardson number and is a decreasing function of

Richardson number. It has a similar trend to that of Fig.

4, with reduced local Nusselt number. The reason is

obviously due to forced convection affecting negatively

the heat transfer at the cold wall.

It is noted that by changing the direction of moving

sides, i.e., both downwards, we obtained exactly the

same results as presented for case III.

Overall heat transfer: Finally, the average Nusselt

number for three cases and different Richardson num-

bers are calculated using Eq. (8) and presented in Fig.

11. We should note that Ri < 1 is the forced convection

dominated regime, Ri > 1 is the natural convection

dominated regime and Ri ¼ 1 is the mixed one. We can

see that for Richardson number, Ri < 1, average Nusselt

number variation as a function of Richardson number

for cases I and II is identical and that for case III shows

a similar trend but with lower values. For Richardson

number, Ri > 1, average Nusselt number for case I is

higher than that of case II and it is almost the same for

cases II and III. We can also see that if the direction of

the two moving walls is the same, the heat transfer is

reduced and if they are moving in the opposite direction,

it is enhanced. For Ri < 1, the heat transfer enhance-

ment may be about three times. However, for natural

convection dominated regime, i.e., Ri > 1, the average

Nusselt number is small and has the same order of

magnitude for all three cases considered, although it is
slightly higher for case I. The reason for a higher heat

transfer for case I is seen when we compare the strength

of circulation in Figs. 2e, 5e and 8e. The same is also the

case for Ri ¼ 100 in Fig. 11. To understand the reason

for better heat transfer for case I, we examined also

streamlines and isotherms for Ri ¼ 100 for all three

cases: isotherms showed steeper gradients for case I

compared to the other two and the strength of circula-

tion was also stronger for that case.
6. Conclusions

This study has been concerned with the numerical

modeling of mixed convection in two-sided lid-driven

differentially heated cavities. It has been performed for

three different cases characterized by the direction of

movement of vertical walls. The governing parameter is

Richardson number, which characterizes the heat

transfer regime in mixed convection.

In view of the results, following findings may be

summarized.

(1) The governing parameter affecting heat transfer is

Richardson number Ri ¼ Gr=Re2. For Ri < 1, the

flow and heat transfer is dominated by forced con-

vection, for Ri > 1, it is dominated by natural con-

vection and for Ri ¼ 1, it is a mixed regime.

(2) For Ri > 1, the average Nusselt number relatively

low and has the same order of magnitude for all

three cases, although the heat transfer is enhanced

for the case of opposing buoyancy and shear forces

and for Ri ¼ 10. For Ri < 1, the forced convection

becomes dominant, the natural convection relatively

weak, as a result of which Nusselt number is rela-

tively higher.

(3) In the case of Ri < 1, which is the forced convection

dominated regime, when the vertical walls move in

opposite direction, cases I and II, the heat transfer
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is considerably enhanced regardless of which side

moves upwards.

(4) When the vertical walls move upwards in the same

direction, case III, the heat transfer becomes reduced

compared to the other two cases. This is especially

discernable for Ri < 1:0.
(5) In case III, the lid opposing buoyancy forces de-

creases the heat transfer significantly by reducing

the strength of the circulation regardless of which

direction they move, i.e. both upwards or both

downwards.
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